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Abstract 
Background: Polymorphonuclear leukocytes contain a large number of enzymes and 
bactericidal proteins stored in granules. Neutrophil activation induces degranulation and 
immediate release of these bioactive substances, including human neutrophil elastase (HNE) 
also known as elastase-2 (ELA2), which may contaminate whole blood units and blood 
components. Materials and Methods: The HNE concentration was determined in the 
supernatants of blood components with a commercial enzyme-linked immunosorbent assay 
(ELISA). The effect of leukocyte depletion and storage was evaluated by testing whole 
blood, buffy-coat-reduced, and leukocyte-depleted red cell units. Buffy-coat-derived 
platelets and plasma were also tested. Results: HNE concentrations at day 1 were about 50 
µg/l in all types of red cell components with the exception of leukocyte-depleted red cells 
(<0.26 µg/l). In leukocyte-depleted red cells, platelets and plasma, no significant increase 
was observed during storage. In whole-blood units and buffy-coat-reduced red cells, the 
HNE concentrations increased steadily and often exceeded 1,000 µg/l when the units 
expired. Conclusion: Leukocyte depletion may limit the inadvertent infusion of bioactive 
substances derived from polymorphonuclear leukocytes, of which HNE is but one example. 
The accumulation of HNE in buffy-coat-reduced red cells may be greater than that of whole 
blood units. HNE accumulates during storage and its quantity may have pathophysiologic 
significance. Platelets and plasma derived from buffy coats contain some HNE, but 
leukocyte-depleted red cells virtually none. However, we consider the accumulation of HNE 
in these components not to be clinically important. The quantities, kinetics, and occurrence 
in various blood components of HNE contamination differ from those observed with 
cytokines. 
 
 
 
 Introduction 
 
 Many types of blood components are contaminated by bioactive substances derived from 
leukocytes and platelets. The kinetics of this and the blood components affected vary 
according to the source of the contamination [1-6]. For example, the contamination by 
cytokines from lymphocytes is clinically relevant [7, 8]. These cytokines accumulate 
during the storage of platelets prepared from platelet-rich plasma [9, 10], whereas platelets 
prepared from buffy coats may be virtually free of them [11]. In contrast to cytokines, 
which may be active at concentrations of nanograms per liter, enzymes from granulocytes, 
such as human neutrophil elastase (HNE), are effector proteins by themselves and often 



occur in concentrations of milligrams per liter. During intraoperative blood salvage, such 
amounts of HNE and other granulocyte enzymes were released, and could be removed by 
washing before retransfusion [12, 13]. In whole blood units, HNE concentrations increased 
30-fold during storage and reached 1,500 µg/l [14-16]. Baseline HNE concentrations were 
not influenced by filtration through a 40-µm polyester filter [16]. In whole blood filtered 
before storage, HNE was significantly lower at days 13 and 21 but did not differ at day 35, 
compared with unfiltered whole blood [16]. Similar HNE contamination occurs in red cells 
units [15, 17, 18]. Prestorage leukocyte depletion by filtration prevented HNE accumu-
lation, whereas poststorage filtration with a third-generation polyester filter did not [17]. 
Granulocyte products other than HNE, such as platelet-activating factor and leukotriene 
B4, may also contaminate blood units in amounts of micrograms per liter [13]. 
 
 HNE [19, 20], also known as elastase-2 (ELA2), makes up at least 5% of the granulocyte 
dry weight and is found in the dense azurophilic granules of neutrophil granulocytes [21, 
22]. It also occurs to some extent in macrophages and endothelial and pancreatic cells. HNE 
is a general, powerful serine protease enzyme with rather low substrate specificity, hydro-
lyzing numerous proteins at neutral pH. After release from neutrophil granules, free HNE is 
rapidly bound to the α1-proteinase inhibitor (formerly called α1-antitrypsin) and a 
smaller fraction to α2-macroglobulin, which inhibit all HNE activity in plasma within 
milliseconds [23]. The complexed HNE [20] has a half-life of 60 min in plasma, and HNE is 
usually assayed by testing the serum concentration of the HNE/α1-proteinase-inhibitor 
complex [24]. HNE may damage the host [23] by enzymatic degradation of connective 
tissue macromolecules, such as collagen and elastin, and many other proteins including 
coagulation and complement factors. 
 
 The release of large quantities of HNE during the early posttraumatic reaction is consi-
dered to be a host defense mechanism and is frequently used as an indicator of the systemic 
inflammatory response [23, 25-27]. The HNE serum concentration increases rapidly within 
hours of trauma [23, 25, 28-31]. A severe clinical course in patients suffering from multiple 
trauma correlates significantly with increased HNE concentration [29-31]. In patients who 
survive or suffer lower grade trauma, HNE tends to decrease within 1 week [23, 28]. HNE 
was found to correlate with mortality in one study [32], but not in others [31]. 
 
 Like HNE, other leukocyte products accumulate in the serum of severely injured patients. 
For example, C-reactive protein [29, 33], interleukin (IL)-6 [31], IL-8 [31], phospholipase A2 
[28, 29, 32], neopterin [28, 29], and C3a [28, 34], have been associated with complications 
and outcome. Upon neutrophil activation, these bioactive substances may be immediately 
released by degranulation without de novo synthesis [35-37]. Such mediators are used in 
clinical studies for patient monitoring, because the activation of polymorphonuclear neutro-
phils early after trauma is considered to contribute to the systemic inflammatory response [38-
40]. The mediators of sensitized leukocytes may enhance host resistance and control infec-
tion. They may also depress the function of remote organs and cause tissue injury by a 
systemic inflammatory response [38, 41]. To classify the severity of injury, leukocyte pro-
ducts may be included in trauma scores, which are of critical clinical importance to guide 
decisions for diagnostic procedures, therapeutic interventions, or interhospital transfer of 
trauma patients. 
 
 Our study was prompted by the possibility that massive transfusions may be a iatrogenic 
source of inflammatory mediators from polymorphonuclear leukocytes. We checked HNE as 
a parameter representing the release of bioactive substances from the granules of neutrophilic 
granulocytes. We systematically measured the HNE concentrations in the blood components 



used in current supportive therapy of, for example, trauma patients. Storage time, white blood 
cells (WBC), and granulocytes were associated with HNE contamination. Without leuko-
depletion, the HNE content in red cell units is considerable and may confound HNE testing in 
polytransfused patients. The clinical relevance of the inadvertent infusion of large quantities 
of granulocyte enzymes in critically ill patients is unknown. 
 
 
 
 Materials and Methods 
 
 Preparation of Blood Components 
 Whole blood (500 ml) was collected from volunteers donors into 70 ml of citrate-
phosphate-dextrose (CPD) stabilizer in primary containers of a 'top and bottom' system made 
of polyvinylchloride with 2-diethylhexylphtalate (2-DEHP) plasticizer in accordance with the 
large-scale routine procedures as described previously [11]. Whole blood units were not 
further processed. To prepare buffy-coat-reduced red cells and plasma, the whole blood was 
centrifuged (slow acceleration, 0-3,900 g for 4 min and 3,900 g for 12 min; Roto Silenta RP, 
Hettich, Tuttlingen, Germany) within 18 h. The supernatant (plasma) and the infranatant (red 
cells) were transferred to integrally attached, secondary satellite containers by using an 
automatic blood separation device (Optipress 1; Baxter, München, Germany). The buffy-coat-
reduced red cells were suspended in additive solution (SAG-Mannitol). By filtration of these 
buffy-coat-reduced red cells with a polyester filter (BPF4-BBSd; Pall, Dreieich, Germany), 
residual WBC and platelets were removed and leukocyte- and platelet-reduced (filtered) red 
cell units with additive solution were obtained. Platelets were produced from buffy coats by a 
soft-spin method [11]. During production and storage, the temperature was maintained at 4±2 
°C for red cells and 22±2°C for platelets. Within 18 h of collection, the plasma was separated 
and immediately flash-frozen then stored at -40 °C for 60 days. WBC and granulocyte counts 
after preparation were checked with a cell counter (Onyx; Coulter, Krefeld, Germany). For 
quality control when WBC counts were below the detection limit of the cell counter, routine 
preparations were visually checked by microscopy in Neugebauer chambers. 
 
 In 1996, we produced more than 150,000 buffy-coat-reduced red cell units. For quality 
control, 153 of these were evaluated at random and found to contain 1.2 x 109 WBC per liter 
(mean, range: <0.01-10). Of 8,000 leukocyte-depleted red cell units, 48 were checked and 
contained 5.9 x 105 WBC per liter (range: <0.01-39); of 26,000 platelet units, 167 contained 
0.31 x 109 WBC per liter (range: < 0.01-4.4), and of 40,000 plasma units, 66 contained 1.6 x 
107 WBC per liter (range: < 0.01-10). We studied 10 whole blood units, 10 buffy-coat-
reduced and 10 leukocyte-depleted red cell units, 8 platelet concentrates derived from buffy 
coats, and 11 plasma units. The blood components tested in this study were representative of 
routine preparations; the only exception were whole blood units, which are not produced for 
clinical use at our institution, but are not infrequently transfused elsewhere. On the final 
sampling day, we checked all blood components of this study for bacterial contamination, and 
by cell counter for leukocyte content. All were sterile after a culture period of at least 15 days. 
 
 Sampling Procedure 
 Before sampling, the units were gently agitated for 5 min. By sterile puncture with a long 
needle through a latex adapter attached to each blood bag, samples of about 5 ml were drawn at 
each time point selected. The samples were immediately centrifuged and the supernatant stored 
frozen at -80 °C in aliquots. Shipment was on dry ice. Aliquots were tested in batches. Testing 
was performed immediately after thawing of any aliquot. 
 



 HNE Determination 
 HNE [19] (EC 3.4.21.37) was determined in plasma as an HNE/α1-proteinase-inhibitor 
complex by a 'two-site' sandwich enzyme-linked immunosorbent assay (ELISA) (PMN 
Elastase, 1.12589; Merck, Darmstadt, Germany) [24]. The detection limit was <0.26 µg/l. The 
reference range was 20-180 µg/l in plasma [42]. 
 
 HNE Recovery 
 As control, to prove that a quantitative detection of HNE was possible with our assay 
system, we added 5,000 ng purified human 32-kD neutrophil elastase-2 enzyme (EC 3.4.21.37, 
lot No. FA107131443; Merck, Darmstadt, Germany) in 50 µl 0.9% NaCl to 5 ml samples 
drawn from each type of blood component at day 1 resulting in a calculated concentration of 
1,000 µg/l. After centrifugation, supernatants were sampled for HNE testing. 
 
 HNE Release after Neutrophil Activation 
 At day 1 we added 100 µl cytochalasin B (10 mmol; Sigma, St. Louis, Mo, USA) dissolved 
in dimethylsulfoxide (DMSO) per 100 ml volume of cellular components prewarmed to 37 °C 
(about 300 ml total volume for red cells and about 70 ml for platelets). After 5 min incubation 
during agitation, we added 100 µl of N-formyl-L-methionyl-L-leucyl-L-phenylalanine chemo-
tactic peptide (1 mmol f-MLP in DMSO; Serva GmbH, Heidelberg, Germany) per 100 ml 
volume. Sampling was done after 5 min incubation during agitation. Additional samples were 
drawn on day 5 for platelets and on days 10 and 21 for red cells. 
 
 Statistics 
 HNE and WBC concentrations were given as median (range). We performed a statistical 
analysis by using the two-sided nonparametric Kruskal-Wallis rank sum test with Bonferroni 
correction for multiple testing. 
 
 
 
 Results 
 
 HNE in Red Cells Preparations 
 The HNE concentrations in whole blood and buffy-coat-reduced red cells units increased 
considerably during storage (fig. 1). The baseline HNE concentration was about 50 µg/l at day 1. 
The accumulation of HNE was particularly pronounced after day 6. On expiration of the units, 
the median HNE contamination exceeded 1,000µg/l. In contrast, the median HNE contamination 
of leukocyte-depleted red cell units was below the detection limit of <0.26 µg/l throughout their 
storage period. 
 
 The HNE contamination appeared to be lower in buffy-coat-reduced red cells compared with 
whole blood units up to day 21, when the whole blood units expired (table 1). The differences in 
HNE supernatant concentrations were statistically significant at days 3 and 6 and would appear 
even more pronounced, if the total HNE amounts were considered, given about 250 ml super-
natant (plasma) in whole blood but only about 120 ml in buffy-coat-reduced red cell units (110 
ml additive solution and about 10 ml plasma). However, HNE concentrations and even total 
amounts of HNE in buffy-coat-reduced red cells beyound day 21 may well exceed HNE in 
whole blood units at expiration day 21. The highest HNE contaminations were frequently in 
buffy-coat-reduced red cells rather than whole blood. 
 



 
 

 
 
 
 
 HNE in Platelet and Plasma Preparations 
 In buffy-coat-derived platelets and in plasma the median baseline of HNE was about 50 µg/l 
at day 1 (table 2). A minimal HNE increase was observed until expiration of the platelets at day 5 
and after thawing of plasma that had been stored at -40°C for 60 days. 

 
 
Table 2. HNE concentration (mean 
and range, in parentheses) in buffy 
coat-derived platelets and plasma 
 



 
 
 
 Recovery of Exogenous HNE 
 As a control, we tested the recovery after exogenous addition of HNE in one 5-ml sample for 
each type of blood component (5,000 ng HNE added to 5 ml, final concentration 1,000 µg/l). 
The recovery rate was generally greater than 90%. In a whole blood sample, 899 µg/l versus 
baseline 27 µg/l were recovered (buffy-coat-reduced red cells: 916 versus 23 µg/l; leukocyte-
depleted red cells: 966 versus <0.26 µg/l; platelets 1,035 versus 47 µg/l; and plasma: 965 versus 
51 µg/l. 
 
 Neutrophil Activation and HNE Release Induced by Cytochalasin B and f-MLP in Cellular  
 Blood Components 
The addition of cytochalasin B and f-MLP to units at day 1 resulted in an immediate release of 
HNE but did not prevent the further accumulation of HNE in the supernatant during storage. 
Whole blood units showed an HNE increase to 184 and 336 µg/l HNE after stimulation (n = 2; 
baseline: 52 and 130 µg/l at day 1) and 2,035 µg/l (n = 1; baseline 1,933 µg/l at day 10). In 
buffy-coat-reduced red cells, the HNE increased to 36 and 211 µg/l (n = 2; baseline: 6 and 182 
µg/l at day 1) and 304 µg/l (n = 1; baseline 240 µg/l at day 10). Further increases of HNE in 
whole blood and buffy-coat-reduced red cell units at day 21 were minimal (data not shown). 
Upon stimulation of leukocyte-depleted red cells (day 1: n = 2, days 10 and 21: n = 1) and 
platelets (days 1 and 5: n = 3), the HNE concentrations increased minimally, if at all (data not 
shown). Neutrophil activation in plasma units was not tested. 
 
 Granulocyte Count in Buffy-Coat Reduced Red Cell Units 
 In accordance with previous observations [43], the automatic blood separation procedure 
preferentially removed mononuclear lymphocytes. The majority of residual WBC in our buffy-
coat-reduced red cell units were neutrophil granulocytes (median 89%, range: 82-92%, n = 8; 
reference range in whole blood: 42-75%). 
 
 
 
 Discussion 
 
 We systematically checked the contamination by HNE in the standard blood components 
frequently used today for transfusion therapy. A prime source of inadvertent exposure of 
transfusion recipients to HNE are buffy-coat-reduced red cell units. If still used for transfusions, 
whole blood units would be a similar source of HNE exposure. Platelets and plasma contained 
low amounts of HNE, not exceeding the normal HNE plasma concentrations of healthy indivi-
duals. The median HNE contamination of leukocyte-depleted red cell units was below the 
detection limit of our assay throughout the storage period. 
 
 Sieunarine et al. [14] and Hertfelder et al. [18] demonstrated a >30-fold increase of HNE in 
whole blood units with mean concentrations of 1,100 µg/l at day 28 and in red cell concentrates. 
These observations were confirmed in our study showing that the median HNE concentration 
increased from 45 µg/l 1 at day 1 to about 1,100 µg/l at day 21 in whole blood units. For the 
clinical practice, the data with buffy-coat-reduced red cell units are relevant, because they 
contained abundant HNE, like whole blood units during the first 21 days of storage and, at 
expiration on day 35, perhaps exceeding that of whole blood. The maximum HNE load in buffy-
coat-reduced red cell units was about 10 mg/1 in 120 ml of additive solution/plasma. This 



unexpected degree of contamination may be explained by the observation that the neutrophil 
granulocyte fraction in buffy-coat-reduced red cell units was high, because the automatic blood 
separation procedure may preferentially eliminate mononuclear rather than polymorphonuclear 
leukocytes. 
 
 The median HNE contamination in leukocyte-depleted red cell units was below the detection 
limit of 0.26 µg/l throughout their storage period. Leukocyte depletion by filtration not only 
completely prevented HNE accumulation during storage, but the filter may have absorbed 
naturally occurring HNE from the suspension medium. The mechanism is unknown and may not 
be effective with all leukocyte depletion filters [15, 17, 44]. Similar effects, however, have been 
reported for some, but not all, polyester filters with regard to the adsorption of C3a, C5a, IL-8 
and RANTES [45]. If HNE-free red cell transfusion is an objective, prestorage leukocyte-
depleted red cell units would be a first choice. 
 
 Throughout the storage period, HNE in platelets and plasma was within the reference range 
for plasma concentrations of healthy persons. We did not test whether leukocyte depletion of 
platelets might eventually reduce their residual HNE contamination. Taking our results with 
various blood components and reviewing the literature on their contamination by cytokines [3-7, 
46] we concluded that the doses, kinetics and types of blood components affected vary consi-
derably as to contamination by mono- and polymorphonuclear leukocyte products (table 3). 
There appears to be plenty of room for improvement in the production process, once the relevant 
parameters and efficient procedures are determined. Ample evidence points to the clinical 
relevance of a better quantification of blood component quality and of its consequences for 
transfusion therapy. 
 
 Recent in vitro and retrospective clinical studies correlated adverse effects with storage time 
of blood components [47, 48]. Prospective studies often have not confirmed transfusion effects 
that were claimed in retrospective studies, at least not in regard to their extent [49]. Nevertheless, 
contamination by leukocyte products is a function of storage time and could explain a less 
beneficial effect of stored blood components in some transfusion recipients [50]. Elimination of 
leukocyte products rather than reduction of viable leukocytes may contribute to the beneficial 
effects of leukocyte depletion [51]. 
 
 Our findings may have practical implications for transfusion practice, because of the estab-
lished HNE contamination of standard red cell units. The transfusion of large amounts of HNE 
may cause increased plasma concentrations in the early post-traumatic (i.e. post-transfusion) 
period. It may also influence systemic post-injury reactions, effected by HNE alone or in con-
junction with other neutrophil granule contents. First, buffy-coat-reduced red cells often carry 
0.1-1.0 mg HNE per unit. In patients with severe haemorrhage receiving, for example, 15 red cell 
units containing 1,800 ml supernatant, nearly all the HNE in the blood samples of the early 
posttraumatic period is a consequence of emergency transfusion therapy. Infusions of HNE-
contaminated wound drainage blood also raises the plasma HNE concentrations in patients [44]. 
Hence, the plasma HNE may not represent endogenous inflammatory reactions after trauma in 
patients transfused with HNE-tainted red cells. HNE levels range from 250 to 1,500 µg/l in the 
early period after severe injury [25, 29, 31, 32, 52] and may be merely a surrogate marker for 
transfused red cells rather than endogenous neutrophil degranulation. In emergencies, multi-
transfused patients often receive older red cell units than patients with less transfusions, as in 
elective surgery. No meaningful interpretation can be derived from HNE laboratory data after 
massive transfusions. A 'clean' in vivo situation would be better and could be provided by the 
transfusion of leukocyte-depleted red cells. 
 



 
 
 Second, the clinical effect of transfusions containing HNE is open to question, because of the 
potent proteinase inhibitors in human plasma. We tested the HNE/α1-proteinase-inhibitor 
complex, which does not represent free or active HNE. However, HNE may dissociate from the 
α1-proteinase-inhibitor and bind to α2-macroglobulin. This anti-proteinase renders HNE inactive 
only for large-molecular-weight substrates, whereas most of the HNE activity for low molecular 
weight substrates remains intact [53]. Transfused proteinase-inhibitor complexes may still affect 
the protein cascades of the recipient and induce cytokine synthesis. For example, cathepsin G 
bound to its inhibitor, α1-antichymotrypsin, may induce fibroblasts to synthesize IL-6 [54]. 
Methods specific for HNE activity, e.g. testing the cleavage of L-pyroglutamyl-L-prolyl-L-
valine-p-nitroanilide peptide substrate [55], have not been applied to check HNE activity in 
blood components. However, strong binding of HNE and cathepsin G to cell membranes does 
occur under physiological conditions, leaving both proteases active [56]. We cannot exclude the 
possibility that some membrane-bound proteases from neutrophils may be present and 
functionally active in blood components. 
 
 Third, we took HNE as one parameter representing a large number of bioactive substances 
that can be released from the granules of polymorphonuclear leukocytes. These bioactive 
substances comprise enzymes like cathepsin B, D and G; peroxidase and myeloperoxidase; 
lysozyme; and proteinase 3. They have an intracellular bactericidal role, to which end the 
contents of the lysosomes may be tailored, and usually occur only in small quantities outside of 
leukocytes. However, under pathological conditions, massive release of granule content may 
promote systemic effects by activating cells or plasma protein cascades [38], making many of 
these substances prominent effectors in pathological processes. The granule proteins can activate 
lymphocytes, stimulate the complement system [23], cause platelet aggregation, effect the 
release of histamine from mast cells [57], and facilitate the production of oxygen free radicals 
[58]. The observed levels of the HNE in stored blood components clearly indicate that neutrophil 
degranulation has occurred and implies that other WBC granule content, may be present in the 
additive solution, and active in vivo, after inadvertent transfusion. 
 



 The preparation processes themselves did not seem to cause neutrophil degranulation, 
because the HNE baseline was identical for all unfiltered blood components and within the 
normal range of human plasma. The induced degranulation at day 1, and also at day 10, showed 
that a reservoir of HNE could be released from granules immediately upon appropriate 
stimulation. A synthesis in red cell units at +4°C was not observed for cytokines [46] and is 
likewise not expected for HNE. A formal proof of this hypothesis would require further 
experiments with protein synthesis inhibitors. Because some granulocytes may remain viable 
during storage and release their granule content in vivo after transfusion, the actual HNE exposed 
of patients may be greater than implied by the in vitro results. 
 
 In the present study we showed, that HNE concentrations may increase more than 50-fold 
during storage of whole blood and buffy-coat-reduced red cell units. HNE is only one of several 
enzymes in the granules of neutrophils. Its presence reflects neutrophil degranulation and implies 
the concomitant contamination by other bioactive substances from polymorphonuclear granules. 
Inadvertent infusion of HNE/inhibitor complexes and other granular content may induce 
systemic protein cascades and enhance inflammatory processes in compromised patients who are 
already at high risk because of their underlying disease, such as severe trauma. Leukocyte 
depletion is most effective in averting HNE contamination and may limit the potentially harmful 
effects of transfusing HNE and other contaminants of granulocyte origin. This prophylaxis 
would be of prime importance for all patients in need of massive transfusions. 
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